Electron Kinetics in Magnetic nozzles

E. Ahedo, M. Merino, G. Sánchez-Arriaga, J. Zhou, and others

Plasmas and Space Propulsion Team (EP2) Universidad Carlos III de Madrid (UC3M)

ExB Workshop, Princeton

Nov.1-2, 2018

Follow us on: GitHub: ep2lab Twitter: @ep2lab

Propulsive Magnetic Nozzle (PMN) Theory

- Since 2009, EP2 is developing a complete theory of PMNs
 - □ 'Propulsive' MN means that we look for
 - ✤ Supersonic acceleration of plasma beam in divergent MN
 - Creation of magnetic thrust
- > Multi-fluid stationary models
 - **DIMAGNO**: main MN physics
 - **G** 3D: **FUMAGNO**: MN near-region, no detachment

Kinetic models (quasi-1D)

□ Steady-state:

□ Time-dependent: VLASMAN

EP2 open source codes are available on GitHub: https://github.com/ep2lab

EPIC Lecture series 2017, Madrid: Watch the lecture on MN at www.youtube.com/watch?v=IEpd1ME2P30

Lecture notes:

M. Merino, E. Ahedo, "*Magnetic Nozzles for Space Plasma Thrusters*" Encyclopedia of Plasma Technology, 2016

MN in experiments

DIMAGNO (2010)

- Fully 2D model of divergent MN
 - No self-similarity
 - No ambipolar condition on current
 - Increase of beam momentum in MN through magnetic force

$$\nabla \cdot (m_i n \boldsymbol{u}_i \boldsymbol{u}_i + \overline{\overline{P}}) = \boldsymbol{j} \times \boldsymbol{B}$$

- Magnetic thrust (i.e. reaction), $j_{\theta}B_r$, based on beam θ current
- Better operation at low plasma- β
- Partially-magnetized ions
 - Detachment via ion demagnetization
 - For fully-magnetized ions & current ambipolarity \rightarrow FUMAGNO 3D

DIMAGNO (2010)

- Collisionless (i.e. rarefied beam)
 - **\Box** Beam θ current must be created inside source
 - Conservation of beam energy

$$\nabla \cdot \sum \left[\left(\frac{1}{2} m_{\alpha} n u_{\alpha}^{2} + \frac{5}{2} T_{\alpha} \right) n \boldsymbol{u}_{\alpha} + \boldsymbol{q}_{\alpha} \right] = \boldsymbol{j} \cdot \boldsymbol{E} \simeq j_{\theta} \boldsymbol{E}_{\theta} = 0$$

MN expansion

- ✤ Internal energy → Axially directed energy
- Electron thermodynamics
 - □ Assumption: Isotropic $\overline{\overline{P}}_e$ + isothermal/polytropic behavior:

$$\label{eq:prod} \checkmark \ \ \nabla \cdot \overline{\bar{P}} \simeq \nabla \cdot \overline{\bar{P}}_e \simeq \nabla p_e \simeq n_e \nabla h_e,$$

♦ barotropic function: $h_e \propto T_e^{\gamma-1}$, $\ln n$

- $\hfill\square$ No justification for a magnetized free-molecular ($Kn\gg1$) flow
 - This is DIMAGNO's current weak point
- \square Extension to anisotropic $\bar{\bar{P}}_e$ is on the tasks' list
- \blacktriangleright Assistance on $\overline{\overline{P}}_{e}$ sought in kinetic models

Martínez-Sánchez, Navarro, Ahedo, PoP 22, 053501 (2015)

- Semi-analytical solution for VDF
- Discussion here focused on electron dynamics
- ▶ Upstream: semi-Maxwellian source of electrons, $f_e^+ \propto \exp\left(-\frac{m_e v^2}{2T_e}\right)$
- Convergent side of MN:
 - □ Both *E* and *B* tend to confine electrons
 - □ Most electrons are reflected back \Rightarrow $f_e \simeq$ Maxw., $T_e \simeq$ const
 - No macroscopic B-mirror effect in convergent geometry

- Divergent side of MN:
 - □ *E* is confining; *B* increases parallel energy
 - □ Maxwellianicity is lost: there are regions of v –space:
 - 1. Empty \Rightarrow Cooling + anisotropy $\left(\frac{T_{\perp}}{T_{\parallel}} < 1\right)$
 - 2. Unconnected with $z = \pm \infty$
 - These are isolated regions of doubly-trapped electrons
 - Similar case in probe theory
 - Stationary model is unable to determine f_e there

Merino, Mauriño, Ahedo, PSST 27, 035013 (2018)

- AKILES: Quasi-axial kinetic code for magnetized & unmagnetized plumes
 - □ Magnetic Moment, $\mu = \frac{mv_{\perp}}{B}$, and Radial Action Integral, $J_r = \oint mv_r dr$, are the respective adiabatic invariants
 - Main issue of stationary model: Double trapped electrons might be majority and dominate ϕ profile

VLASMAN

S.-Arriaga, Zhou, Ahedo, M.-Sánchez, Ramos, PSST 27, 035002 (2018)

Time-dependent kinetic Vlasov problem in a quasi-axial divergent MN

- Motivation: doubly-trapped region is likely filled (a) by sporadic collisions and (b) in the transient formation of MN
- □ Goals: 1) to determine doubly-trapped f_e from transient period 2) to confirm f_e anisotropic cooling 2) to understand MAN formation

3) to understand MN formation

VLASMAN extension:

Inclusion of collisionality effects (Space Propulsion 2018, Seville)

- Doubly-trapped electron regions get filled thanks to collisions
 - Characterization of f_e trapped is pending
- $\hfill\square$ Axial profiles of ϕ and n get modified

Magnetized vs unmagnetized plumes

- > AKILES showed comparable cooling process in mag. & unmag. plumes
- Full-PIC unmagnetized plume (Li, Merino, Ahedo, etal.; PSST submitted) and VLASMAN (kinetic, magnetized) confirm the same
 - □ Numerically: VLASMAN, no statistical noise but simpler geometries
 - □ Both use a finite spatial domain and try to solve pending issues on
 - Downstream conditions for electrons
 - ✤ Extrapolation of results to $z \rightarrow \infty$ and steady-state

On heat fluxes

- For a collisionless electron beam it is better to close fluid equations:
- at 2nd v-moment, which requires finding tensor \$\overline{P}_e\$, than at 3rd vmoment, which requires \$\overline{q}_e\$, and this does not satisfy Fourier-type laws. (Indeed, closure at 4th v-moment is suggested)
- ➢ For VLASMAN case, we find

$$\begin{aligned} q_{\parallel e} &\approx \frac{3}{4} u_e n T_{\parallel e} \propto B \\ q_{\perp e} &\approx \frac{1}{2} u_e n T_{\perp e} \propto B^2 \end{aligned}$$

In collisionless flows, there are no simple physical interpretation of *q* □ Indeed, in some cases *q* · ∇T > 0

Thank you! Questions?

email: ep2@uc3m.es web: ep2.uc3m.es

Follow us on: GitHub: ep2lab Twitter: @ep2lab